Un défi par semaine

Décembre 2015, 1er défi

El 4 diciembre 2015  - Escrito por  Ana Rechtman Ver los comentarios (8)
Leer el artículo en  

Nous vous proposons un défi du calendrier mathématique 2015 chaque vendredi et sa solution la semaine suivante.

Semaine 49 :

Le centre du cercle $a$ est sur le cercle $b$ et le centre du cercle $b$ est sur le cercle $c$. Quel est le rapport entre l’aire de la partie coloriée et l’aire de la partie non coloriée?

PNG - 21.7 KB

Solution du 4e défi de Novembre :

Enoncé

La réponse est $36$.

La liste de ces $120$ nombres, par ordre croissant, ressemble à

$1\,234$

$1\,235$

$1\,243$

$1\,245$

$\vdots$

$5\,431$

$5\,432$

Dans la liste de ces $120$ nombres, on remarque que dans chacune des quatre colonnes, chaque chiffre $1$, $2$, $3$, $4$ ou $5$ apparaît exactement $24$ fois.
Par conséquent la somme des chiffres de chaque colonne est

$1 \times 24 + 2 \times 24 +3 \times 24 +4 \times 24 +5 \times 24 =15\times 24 = 360.$

Par conséquent $S=399\,960$ et $3+9+9+9+6=36$ est la somme de ses chiffres.

Post-scriptum :

Calendrier mathématique 2015 - Sous la direction d’Ana Rechtman Bulajich, Anne Alberro Semerena, Radmilla Bulajich Manfrino - Textes : Ian Stewart.
2014, Presses universitaires de Strasbourg. Tous droits réservés.

Article édité par Ana Rechtman

Comparte este artículo

Para citar este artículo:

Ana Rechtman — «Décembre 2015, 1er défi» — Images des Mathématiques, CNRS, 2015

Comentario sobre el artículo

Voir tous les messages - Retourner à l'article

  • Déce exactement, mbre 2015, 1er défi

    le 4 de diciembre de 2015 à 15:31, par ROUX

    Monsieur Boilley, je ne comprends pas vos deux commentaires :). Plus exactement, je voudrais connaitre la question pour laquelle votre réponse est la réponse juste ;)!

    Répondre à ce message

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.