Un défi par semaine
Décembre 2017, 1er défi
Le 1er décembre 2017 Voir les commentaires (4)Lire l'article en


Nous vous proposons un défi du calendrier mathématique 2017 chaque vendredi et sa solution la semaine suivante.
Semaine 48 :
La somme des $m$ premiers entiers positifs impairs vaut $212$ de plus que la somme des $n$ premiers entiers positifs pairs. Quelle est la somme de toutes les valeurs possibles des entiers $n$ vérifiant cette condition ?
Post-scriptum :
Article édité par Ana Rechtman
Calendrier mathématique 2017 - Sous la direction d’Ana Rechtman, Maxime Bourrigan - Textes : Antoine Rousseau et Marcela Szopos.
2016, Presses universitaires de Strasbourg. Tous droits réservés.
Partager cet article
Pour citer cet article :
Ana Rechtman — «Décembre 2017, 1er défi» — Images des Mathématiques, CNRS, 2017
Laisser un commentaire
Actualités des maths
-
11 mai 2022Printemps des cimetières
-
3 mai 2022Comment les mathématiques se sont historiquement installées dans l’analyse économique (streaming, 5/5)
-
1er avril 2022Prix D’Alembert 2022 attribué à Jean-Michel Blanquer
-
10 mars 2022Géométries non euclidiennes mais dynamiques
-
6 mars 2022Contrôle et apprentissage automatique (streaming, 10/3)
-
24 février 2022Bienvenue au CryptoChallenge 2022 « Qui a volé les plans d’Ada Lovelace ? »
Commentaire sur l'article
Voir tous les messages - Retourner à l'article
Décembre 2017, 1er défi
le 1er décembre 2017 à 10:17, par Kamakor