Un desafío por semana

Diciembre 2018, primer desafío

Le 7 décembre 2018  - Ecrit par  Ana Rechtman
Le 7 décembre 2018
Article original : Décembre 2018, 1er défi Voir les commentaires
Lire l'article en  

Proponemos un desafío del Calendario Matemático por semana y su solución a la semana siguiente. ¡El calendario 2019 está en librerías (en Francia) !

Semana 49

¿Cuántos enteros $n$ entre $1$ y $100$ son tales que $n^2+4$ y $n+3$ tienen un divisor común mayor que $1$ ?

Solución del quinto desafío de noviembre :

Enunciado

La solution est : $71$.

Comme le produit des deux chiffres est un nombre premier, un des chiffres doit être $1$.

Donc l’autre chiffre est un nombre premier, vu que c’est le résultat du produit des chiffres.

Ainsi, l’autre chiffre ne peut être que $2$, $3$, $5$, $7$.

La combinaison qui donne le plus grand nombre premier est $71$, lequel satisfait les conditions du problème puisque 17 est aussi premier.

Post-scriptum :

Calendario matemático 2019 - Bajo la dirección de Ana Rechtman, con la contribución de Nicolas Hussenot - Textos : Claire Coiffard-Marre y Ségolen Geffray. 2018, Presses universitaires de Grenoble. Todos los derechos reservados.

Partager cet article

Pour citer cet article :

— «Diciembre 2018, primer desafío» — Images des Mathématiques, CNRS, 2018

Commentaire sur l'article

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?