Henri Poincaré, Sur la nature du raisonnement mathématique

El 24 marzo 2012  - Escrito por  Étienne Ghys Ver los comentarios

Nous commémorons en cette année les 100 ans de la mort d’Henri Poincaré. Cet anniversaire est un prétexte idéal pour présenter son œuvre dense qui a influencé la science moderne.

Poincaré a publié quatre livres philosophiques :
La Science et l’Hypothèse (1902),
La Valeur de la Science (1905),
Science et Méthode (1908) et
Dernières Pensées (posthume) (1913). La plupart des chapitres de ces livres reprennent des conférences de Poincaré et sont donc relativement indépendants les uns des autres.

Nous vous proposons de retrouver toutes les semaines l’enregistrement d’un chapitre d’un de ces livres. L’ordre suivi par le lecteur sera quelque peu aléatoire, au gré de son humeur.

Henri Poincaré, Science et Hypothèse, Chapitre I : Sur la nature du raisonnement mathématique

«
La possibilité même de la science mathématique semble une contradiction insoluble. Si cette science n’est déductive qu’en apparence, d’où lui vient cette parfaite rigueur que personne ne songe à mettre en doute ? Si, au contraire, toutes les propositions qu’elle énonce peuvent se tirer les unes des autres par les règles de la logique formelle, comment la mathématique ne se réduit-elle pas à une immense tautologie ? Le syllogisme ne peut rien nous apprendre d’essentiellement nouveau et, si tout devait sortir du principe d’identité, tout devrait aussi pouvoir s’y ramener. Admettra-t-on donc que les énoncés de tous ces théorèmes qui remplissent tant de volumes ne soient que des manières détournées de dire que A est A?
»

[...]

Écouter le podcast :

Téléchargement au format MP3

Voir (et écouter) tous les podcasts.

JPEG - 61 KB
Article édité par Étienne Ghys

Comparte este artículo

Para citar este artículo:

Étienne Ghys — «Henri Poincaré, Sur la nature du raisonnement mathématique» — Images des Mathématiques, CNRS, 2012

Comentario sobre el artículo

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.