Un défi par semaine
Juin 2015, 4e défi
Le 26 juin 2015 Voir les commentaires (10)Lire l'article en


Nous vous proposons un défi du calendrier mathématique 2015 chaque vendredi et sa solution la semaine suivante.
Semaine 26 :
Soient $p$ et $q$ deux nombres premiers inférieurs à $100$. Si les nombres $p+6$, $p+10$, $q+4$, $q+10$ et $p+q+1$ sont tous premiers, quelle est la plus grande valeur que peut prendre $p+q$ ?
Post-scriptum :
Article édité par Ana Rechtman
Calendrier mathématique 2015 - Sous la direction d’Ana Rechtman Bulajich, Anne Alberro Semerena, Radmilla Bulajich Manfrino - Textes : Ian Stewart.
2014, Presses universitaires de Strasbourg. Tous droits réservés.
Partager cet article
Pour citer cet article :
Ana Rechtman — «Juin 2015, 4e défi» — Images des Mathématiques, CNRS, 2015
Laisser un commentaire
Actualités des maths
-
11 mai 2022Printemps des cimetières
-
3 mai 2022Comment les mathématiques se sont historiquement installées dans l’analyse économique (streaming, 5/5)
-
1er avril 2022Prix D’Alembert 2022 attribué à Jean-Michel Blanquer
-
10 mars 2022Géométries non euclidiennes mais dynamiques
-
6 mars 2022Contrôle et apprentissage automatique (streaming, 10/3)
-
24 février 2022Bienvenue au CryptoChallenge 2022 « Qui a volé les plans d’Ada Lovelace ? »
Commentaire sur l'article
Voir tous les messages - Retourner à l'article
Juin 2015, 4ème défi
le 27 juin 2015 à 13:36, par Kamakor