Un défi par semaine

Juin 2018, 2e défi

Le 8 juin 2018  - Ecrit par  Ana Rechtman Voir les commentaires (8)

Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante. Il n’y aura pas d’édition papier du calendrier 2018, il faudra attendre l’édition 2019 !

Semaine 23

Le triangle rectangle $ABC$ a une aire de $12\,cm^2$. Si $AN=NM=MC$, $XB=BM$ et $YB=BN$. Quelle est l’aire du quadrilatère $XYCA$ ?

Solution du 1er défi de Juin :

Enoncé

La réponse est :$2$ nombres.

Si $|||||x-1|-2|-3|-4|-5|=0$, alors
$||||x-1|-2|-3|-4|=5$.
Donc, $|||x-1|-2|-3|-4$ est égal à 5 ou
à $-5$, d’où $|||x-1|-2|-3|=4\pm 5$.
Comme le côté gauche de cette dernière égalité n’est jamais négatif, la seule possibilité est qu’on ait $|||x-1|-2|-3|=9$.
En appliquant ce raisonnement de nouveau, on obtient
\[\begin{eqnarray*} ||x-1|-2|& = & 12\\ |x-1| & = & 14\\ x & = & 1\pm 14, \end{eqnarray*}\]
ce qui implique que $x$ est égal à $-13$ ou à $15$. Par conséquent, il y a deux nombres réels qui satisfont l’équation.

Partager cet article

Pour citer cet article :

Ana Rechtman — «Juin 2018, 2e défi» — Images des Mathématiques, CNRS, 2018

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Pas plus simple

    le 8 juin à 15:27, par Daniate

    Traçons CY et la parallèle à AC passant par B. On démontre aisément que les 8 petits triangles ainsi formé ont la même aire.

    Autre méthode : Z est l’intersection de AX et CY. Le triangle ACZ à même base que ABC mais il est 3 fois plus haut. Pour obtenir le trapèze on enlève XYZ dont l’aire est le tiers de ABC ... etc ....

    Et pour finir mon message une méthode qui s’appuie sur la logique de la question. Si la longueur de AB n’est pas donnée c’est qu’elle peut prendre n’importe quelle valeur, par exemple 6cm . La hauteur de ABC est donc 4cm, celle du trapèze est alors 8 cm et la petite base est 2cm ... etc ...

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?

Suivre IDM