Un défi par semaine

Juin 2018, 2e défi

El 8 junio 2018  - Escrito por  Ana Rechtman Ver los comentarios (8)
Leer el artículo en  

Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante. Il n’y aura pas d’édition papier du calendrier 2018, il faudra attendre l’édition 2019 !

Semaine 23

Le triangle rectangle $ABC$ a une aire de $12\,cm^2$. Si $AN=NM=MC$, $XB=BM$ et $YB=BN$. Quelle est l’aire du quadrilatère $XYCA$?

Solution du 1er défi de Juin :

Enoncé

La réponse est :$2$ nombres.

Si $|||||x-1|-2|-3|-4|-5|=0$, alors
$||||x-1|-2|-3|-4|=5$.
Donc, $|||x-1|-2|-3|-4$ est égal à 5 ou
à $-5$, d’où $|||x-1|-2|-3|=4\pm 5$.
Comme le côté gauche de cette dernière égalité n’est jamais négatif, la seule possibilité est qu’on ait $|||x-1|-2|-3|=9$.
En appliquant ce raisonnement de nouveau, on obtient
\[\begin{eqnarray*} ||x-1|-2|& = & 12\\ |x-1| & = & 14\\ x & = & 1\pm 14, \end{eqnarray*}\]
ce qui implique que $x$ est égal à $-13$ ou à $15$. Par conséquent, il y a deux nombres réels qui satisfont l’équation.

Comparte este artículo

Para citar este artículo:

Ana Rechtman — «Juin 2018, 2e défi» — Images des Mathématiques, CNRS, 2018

Comentario sobre el artículo

Voir tous les messages - Retourner à l'article

  • Juin 2018, 2e défi

    le 8 de junio de 2018 à 08:19, par Kamakor

    Si les points $X$, $B$ et $M$ sont alignés et si les points $Y$, $B$ et $N$ sont alignés alors l’aire de $XYCA$ est de $32\; cm^2$.

    Répondre à ce message

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.