Un défi par semaine

Mars 2015, 4e défi

Le 27 mars 2015  - Ecrit par  Ana Rechtman Voir les commentaires (14)
Lire l'article en  

Nous vous proposons un défi du calendrier mathématique 2015 chaque vendredi et sa solution la semaine suivante.

Semaine 13 :

Si les cordes $[AB]$ et $[CD]$ sont perpendiculaires, quelle est la valeur de $\widehat{COB}+\widehat{AOD}$ ?

PNG - 26.1 ko

Solution du 3ème défi de Mars :

Enoncé

La réponse est $585$.

Considérons les nombres $a < b < c < d < e < f < g < h < i$. Comme le nombre du milieu $e$ vaut $\frac{a+b+c+d+e+f+g+h+i}{9}$, on obtient l’égalité

$9e-e= 8e=a+b+c+d+f+g+h+i$.

D’autre part, nous savons que $\frac{e+f+g+h+i}{5}=80$ et $\frac{a+b+c+d+e}{5}=50$, donc :

$e+f+g+h+i = 400$

$a+b+c+d+e = 250.$

En sommant ces deux relations, nous obtenons

$2e+ a+b+c+d+f+g+h+i =650.$

Ainsi, $2e=650-( a+b+c+d+f+g+h+i )=650-8e$ et $e=65$. La somme des neuf nombres est donc $8e+e=9e=9\times65=585$.

Post-scriptum :

Calendrier mathématique 2015 - Sous la direction d’Ana Rechtman Bulajich, Anne Alberro Semerena, Radmilla Bulajich Manfrino - Textes : Ian Stewart.
2014, Presses universitaires de Strasbourg. Tous droits réservés.

Article édité par Ana Rechtman

Partager cet article

Pour citer cet article :

Ana Rechtman — «Mars 2015, 4e défi» — Images des Mathématiques, CNRS, 2015

Crédits image :

Image à la une - Tischenko Irina / SHUTTERSTOCK

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Mars 2015, 4ème défi

    le 27 mars 2015 à 11:02, par Idéophage

    Ah non, en fait je me suis trompé, les deuxièmes transformations que j’ai données ne préservent pas l’angle droit.

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?