Un défi par semaine
Octobre 2018, 2e défi
Le 12 octobre 2018 Voir les commentaires (6)Lire l'article en


Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante. Il n’y aura pas d’édition papier du calendrier 2018, il faudra attendre l’édition 2019 !
Semaine 41
Déterminer l’entier $n$ le plus petit pour lequel
\[(2^2-1)(3^2-1)(4^2-1)\cdots (n^2-1)\]
est le carré d’un nombre entier.
Partager cet article
Pour citer cet article :
Ana Rechtman — «Octobre 2018, 2e défi» — Images des Mathématiques, CNRS, 2018
Laisser un commentaire
Actualités des maths
-
26 janvier 2021Troisième problème de Hilbert : puzzles polyèdres (Twitch, 1/2)
-
22 janvier 2021Pop Math – diffusion des mathématiques en Europe
-
14 janvier 2021Le mathématicien Vladimir Beletsky (Twitch, 19/1)
-
12 janvier 2021Le désordre, le hasard et les grands nombres (en ligne, 21/1)
-
11 janvier 2021Des tas de sable aux pixels, deux siècles et demi de transport optimal depuis Monge (Paris, 20/1)
-
30 novembre 2020Art et astronomie (conférence en ligne, 3/12)
Commentaire sur l'article
Voir tous les messages - Retourner à l'article
Octobre 2018, 2e défi
le 12 octobre 2018 à 14:21, par Niak