Un défi par semaine

Octobre 2021, 5e défi

Le 29 octobre 2021  - Ecrit par  Ana Rechtman Voir les commentaires (5)
Lire l'article en  

Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante.

Le calendrier 2021 est en vente ! Il s’intitule : « Le ciel dans tous ses états ».

De janvier à décembre, à travers 12 textes superbement illustrés, découvrez l’histoire des équations cachées dans les trajectoires des planètes et des étoiles ainsi que le développement des grandes théories qui ont accompagné cette ­aventure.

Semaine 43

Avec huit couleurs différentes, de combien de manières peut-on colorier les huit sommets d’un cube ?
Chaque sommet doit avoir une couleur différente, toutes les configurations qui sont équivalentes par rotation du cube ne seront comptées qu’une seule fois.

Solution du 4e défi d’octobre :

Enoncé

La réponse est : $112$.

Observons que :

\[ \begin{eqnarray*} (a+1)(b+1)(c+1)& = & abc + ab + bc + ac+a+b+c+1 \\ & = & abc + ab + bc + ac + 13. \end{eqnarray*} \]

Nous avons donc $abc+ab+bc+ac=(a+1)(b+1)(c+1)-13$.

Voyons maintenant comment obtenir la valeur la plus grande de $(a+1)(b+1)(c+1)$.

En utilisant l’inégalité entre la moyenne arithmétique et la moyenne géométrique pour les nombres positifs $a+1$, $b+1$ et $c+1$, nous avons :
\[ 5=\frac{(a+1)+(b+1)+(c+1)}{3} \geq \sqrt[3]{(a+1)(b+1)(c+1)}. \]

Ainsi, la valeur maximale de $(a+1)(b+1)(c+1)$ est égale à $125$, ce qui correspond à $a=b=c=4$.
Nous avons donc :
\[ abc + ab + bc + ac = 125-13 = 112. \]

Post-scriptum :

Calendrier mathématique 2021 - Sous la direction d’Ana Rechtman,

Partager cet article

Pour citer cet article :

Ana Rechtman — «Octobre 2021, 5e défi» — Images des Mathématiques, CNRS, 2021

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Octobre 2021, 5e défi

    le 29 octobre 2021 à 18:08, par Al_louarn

    Ah bravo, je sentais bien qu’il devait y avoir plus simple !

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?