Rome (ou pas ?), 1939
Cartan, Levi-Civita, Schouten
Piste verte Le 24 novembre 2014 Voir les commentaires (3)
C’est l’histoire d’un non-événement, le Congrès Volta qui ne se tint pas à Rome en 1939, et de trois mathématiciens plus ou moins mêlés à ce non-événement : l’un hésite avant de décider de s’y rendre, notamment pour parler avec un deuxième, qui en est exclu, un troisième refuse d’y participer.
C’est l’histoire d’un non-événement. Mais on ne le sait pas, alors on l’organise. Ce sera, croit-on, un grand congrès [1]. On a choisi un sujet [2] dans lequel les mathématiciens italiens se sont illustrés (le congrès aura lieu à Rome).
On choisit les conférenciers avec soin : ce doivent être de bons scientifiques, dont la présence honorera le congrès, la ville, le pays, le régime [3]. On vérifie par exemple qu’Élie Cartan, malgré son prénom biblique, n’est pas juif, on écarte le Français Paul Montel parce qu’on le croit franc-maçon, le Belge Théophile De Donder parce qu’on le sait antifasciste... Aucun d’eux n’en sait rien, bien entendu.
Et on écrit aux heureux élus pour les inviter au Congrès Volta, qui se tiendra à Rome en septembre 1939.
C’est l’histoire de deux mathématiciens qui reçoivent une invitation à participer à ce congrès.
Le premier [4] est néerlandais, il s’appelle Jan Arnoldus Schouten [5]. C’est une erreur de l’avoir invité car voici qu’il se fâche et qu’il écrit une lettre dont il envoie copie à plusieurs de ses collègues et dans laquelle il déclare notamment :
Messieurs, je n’ai pu répondre immédiatement à l’amicale invitation de l’Accademia Reale d’Italia à participer au congrès Volta de 1939 car je voulais d’abord savoir si les savants italiens et étrangers juifs seraient invités ou pas. J’ai donc écrit personnellement au Prof. Severi [6]. Sa réponse ne laisse malheureusement aucun doute à ce sujet. Je me vois donc contraint à refuser votre amicale invitation. Je vous prie toutefois de ne pas considérer ce refus comme une action contre l’Italie, j’ai le plus grand respect pour la science italienne et les sentiments les plus amicaux pour mes collègues italiens. Il m’est toutefois impossible de participer à un congrès sur la géométrie différentielle duquel seront exclus, pour des raisons raciales, des savants italiens et étrangers tels que Tullio Levi Civita, Guido Fubini, Benjamino Segre, D. van Dantzig et Ludwig Berwald [7].
Le deuxième mathématicien est français, il s’appelle Élie Cartan. C’est un des plus importants spécialistes de géométrie différentielle, il est lié à Schouten avec lequel il a écrit plusieurs articles au cours des années précédentes. Il fait naturellement partie des destinataires de la lettre de Schouten. Il la lit attentivement et la conserve soigneusement. Il prend le temps de la réflexion, puis il répond positivement à l’invitation et écrit à Severi [8] :
J’ai l’honneur de vous accuser réception de l’invitation que vous m’avez fait envoyer à participer au IXe Convegno Volta qui aura lieu à Rome en octobre prochain. Je suis très honoré de cette invitation et je vous en remercie. J’assisterai certainement à cette réunion sauf événements imprévus et il me sera très agréable de passer quelques jours avec les collègues mathématiciens de Rome [9].
C’est l’histoire d’un mathématicien italien qui est, lui aussi, un des spécialistes les plus renommés de géométrie différentielle. Il n’est pas particulièrement lié avec Élie Cartan, qu’il a rencontré, bien sûr, et avec qui il échange une correspondance professionnelle assez peu personnelle. L’année précédente (c’est-à-dire 1938), il a envoyé, comme il l’a toujours fait, un de ses articles à Élie Cartan et celui-ci lui a répondu une lettre plutôt longue et beaucoup plus personnelle que d’habitude, dont voici quelques extraits :
Mon cher Ami,
Je vous remercie vivement de votre lettre trop aimable et de votre envoi que je viens de recevoir. J’ai parcouru avec le plus grand intérêt votre mémoire sur la trigonométrie des petits triangles curvilignes sur une surface ; cela m’a rappelé le plaisir que j’avais eu autrefois à lire les Chapitres de Darboux consacrés aux triangles géodésiques, mais l’analyse est poussée cette fois sensiblement plus loin.
Si vous le permettez, je vais vous dire comment, me semble-t-il on pourrait justifier sans calcul la formule de la page 21 […]
M. Fubini [10] que j’ai vu récemment m’a donné des nouvelles de plusieurs de nos amis mathématiciens italiens. Il est inutile de vous dire quels sont nos sentiments. J’espère que Madame Levi-Civita et vous êtes en bonne santé et avez bien profité des vacances.
Je vous prie de croire mon cher collègue à mes sentiments de bien cordiale amitié.
Le mathématicien italien, qui se nomme Tullio Levi-Civita [11] et qui est un de ceux que Schouten citait dans sa lettre, lui a répondu :
Mon cher ami,
Je vous suis affectueusement obligé pour votre lettre si cordiale et intéressante du 18 de ce mois et je m’empresse à exprimer la plus agréable satisfaction pour la manière à la fois spontanée et pénétrante par laquelle, grâce à votre théorie de la torsion, vous avez pu immédiatement établir un résultat dont on ne connaissait pas la source au point de vue purement formel. […]
Tous mes remerciements pour la sympathie que vous m’exprimez à la suite de récentes manifestations antisémitiques. Jusqu’à présent je ne sais officiellement rien, tout en ayant appris assez, ou plutôt beaucoup trop, par les journaux.
Ma femme et moi nous portons heureusement bien et espérons que vous et les vôtres avez eu des agréables vacances. Présentez je vous prie nos meilleurs hommages en famille et agréez l’expression amicale de nos sentiments distingués [12].
Cette sorte de retour en arrière dans l’histoire du non-événement qui est rapportée ici permet de dire quelques mots du contexte. La préparation du Congrès Volta de 1939 a lieu après l’adoption en 1938 par le régime fasciste italien d’une dure législation antisémite. Levi-Civita a du prendre sa retraite. Comme tous les Italiens juifs, il ne peut plus pénétrer dans son institut, ni même dans la bibliothèque, à l’université de Rome. Il est en colère [13]. À peu près simultanément aux lois racistes italiennes, il y a eu son éviction de la revue allemande de recensions [14] Zentralblatt für Mathematik, qui s’est débarrassée de son unique membre italien, sous prétexte que cet Italien était aussi juif. Ce qui avait amené la démission de plusieurs membres du comité de rédaction (mais pas de tous, et d’ailleurs deux Italiens, Severi — encore lui — et Bompiani remplacèrent immédiatement Levi-Civita) [15]. En particulier, Levi-Civita, non seulement n’est pas organisateur du, mais n’est même pas invité au Congrès Volta.
Il n’y a pas besoin de lire entre les lignes pour comprendre que ce que Cartan écrit à Severi, c’est qu’il a l’intention d’aller à Rome, en particulier pour y rencontrer Levi-Civita.
Ainsi l’histoire de Schouten et de Cartan est aussi l’histoire de deux façons de réagir au même problème.
C’est une histoire, à cause de ce non-événement, du printemps 1939 où l’on fête, à Paris, le jubilé d’Élie Cartan et c’est donc aussi l’histoire de ce jubilé, pour lequel des mathématiciens du monde entier viennent à Paris ou envoient des messages de félicitations à Élie Cartan, qui a soixante-dix ans et est toujours modeste, courtois, charmant, délicat. Il y a des discours, de la musique, des réceptions… et un livre qui contient tout ça.
Tous ceux (et même quelques « celles ») qui ont participé voient (ou peut-être ne voient pas) leur nom écrit dans une longue liste alphabétique à la fin du volume. Avec leur titre : déjà en ce temps-là les mathématiciens étaient, comme les militaires, très susceptibles sur leurs titres et grades. Aussi Élie Cartan, qui est un homme particulièrement exquis, fait particulièrement attention à ce que tout soit formulé comme il le convient. Les noms des mathématiciens italiens Enriques, Levi-Civita et Volterra sont accompagnés du titre de « ancien professeur à l’université de Rome », de même Fano, comme Fubini, est « ancien professeur à l’université de Turin », et le mathématicien allemand Otto Blumenthal à celle d’Aix-la-Chapelle.
C’est une minuscule histoire de l’année 1942. Entretemps, une guerre a empêché (entre autres choses) le Congrès Volta de se tenir à Rome en septembre 1939 [16] et le Congrès international des mathématiciens de se tenir à Boston en 1940 [17]. L’État français a lui aussi adopté une législation antisémite.
Levi-Civita est mort à la fin de 1941. La nouvelle prend semble-t-il un peu de temps à arriver à Paris et peut-être encore un peu plus à parvenir à l’Académie des sciences de cette ville. Elle est annoncée le 20 juillet [18]. Levi-Civita était membre étranger de cette académie et l’usage veut que paraisse, dans ses Comptes rendus, une notice nécrologique. C’est Cartan qui écrit cette notice. Ainsi, alors que cette institution ne publie plus, depuis un an, d’articles d’auteurs juifs vivants [19], un juif mort peut encore apparaître dans ses Comptes rendus [20].
Ce n’est plus vraiment l’histoire du Congrès Volta de 1939 puisqu’il n’eut pas lieu, mais c’est l’histoire des conférences qui n’y ont pas été prononcées et qui ont fait l’objet d’un livre publié en Italie en 1943 (mais que Cartan, en 1948, n’avait pas encore vu). Ce livre inclut la conférence envoyée par Élie Cartan, qui faisait la part belle, dans son introduction, aux travaux de Levi-Civita.
Les remarques, les questions et les commentaires de Michele Triestino, Rossana Tazzioli, Antonin Guilloux, Charles Favre, relecteurs de cet article, ont été infiniment précieux pour en améliorer une première version. La reconnaissance de l’auteur et de la rédaction d’Images des mathématiques leur est acquise.
Notes
[1] Sur cette histoire, j’ai bénéficié de beaucoup d’informations que m’a données Annalisa Capristo, que je remercie. Elle a écrit un article (en italien) intitulé L’alta cultura e l’antisemitismo fascista. Il Convegno Volta del 1939 (con un appendice su quello del 1938) et paru dans le journal Quaderni di storia en 2006.
[2] Le congrès porte le nom du physicien italien Alessandro Volta (1745-1827), qui inventa de la première pile électrique et qui donna son nom à l’unité de tension électrique, le « volt ». Il y a eu plusieurs « congrès Volta » les années précédentes, sur des sujets variés, comme l’Afrique en octobre 1938, par exemple et, pour ce qui concerne les mathématiciens, sur les alte velocità in aviazione (grandes vitesses en aviation) en 1935.
[3] Depuis le 31 octobre 1922, Benito Mussolini est président du Conseil du Royaume d’Italie et le régime de ce royaume est un régime fasciste.
[4] Il n’y a aucune subtilité cachée dans l’ordre dans lesquels les trois mathématiciens, Levi-Civita, Schouten, Cartan, apparaissent dans cet article. On les trouvera aussi tous les trois, dans l’ordre de cette note, dans Assembler l’inachevé. Et on trouvera aussi sur Images des mathématiques un portrait d’Élie Cartan, dû à André Weil (et à l’auteur de cet article).
[5] Jan Arnoldus Schouten (1883-1971) est spécialiste de géométrie différentielle et de calcul tensoriel. En 1939, il est professeur à Delft.
[6] Francesco Severi (1879-1961), est un spécialiste italien de géométrie algébrique. C’est aussi un haut dignitaire du régime, « le » mathématicien du fascisme — par exemple il est le seul mathématicien dans l’Accademia d’Italia, l’académie des sciences fasciste crée par Mussolini.
[7] La lettre originale est en allemand, traduite par moi. L’exemplaire de cette lettre que j’ai vu et traduit provient du fonds Élie Cartan des archives de l’Académie des sciences (de Paris).
[8] Cartan et Severi se sont rencontrés plusieurs fois, par exemple tous deux faisaient partie de la commission qui avait décerné les deux premières médailles Fields au Congrès d’Oslo en 1936. Il est donc naturel que Cartan lui écrive.
[9] Cette réponse est conservée aux archives de l’Accademia dei Lincei (de Rome).
[10] Guido Fubini (1879-1943), dont le nom est connu des mathématiciens d’aujourd’hui à cause d’un théorème de théorie de l’intégration, est lui aussi un spécialiste italien de géométrie différentielle. Il a quitté l’Italie pour cause de lois antisémites et a passé un moment à Paris avant de partir pour les États-Unis.
[11] Tullio Levi-Civita (1873-1941) est un spécialiste de géométrie différentielle (mais aussi de mathématiques appliquées). Il est notamment l’inventeur de la connexion de Levi-Civita, un des outils essentiels de la géométrie, apparu en 1917, au moment où les rapports entre la géométrie et la théorie de la relativité étaient les plus serrés. Il est membre correspondant de l’Académie des sciences (de Paris) depuis 1911 et membre associé étranger depuis le 27 juin 1938.
[12] Ces deux lettres sont conservées par l’Accademia dei Lincei de Rome (celle de Levi-Civita est un brouillon de réponse).
[13] Comme la plupart des professeurs d’université italiens, en 1931, il avait signé le serment d’allégeance à Mussolini. Dans son cas ce fut après mûre réflexion et discussion, notamment avec Volterra. Il pensa que ça leur permettrait, à lui et aux étudiants de l’école de Rome, de continuer à travailler, dans cette période difficile.
[14] Il s’agit d’un journal qui publie des résumés des articles spécialisés qui viennent de paraître, un outil indispensable à la communauté mathématique.
[15] Ces problèmes amèneront la création d’une autre revue de recensions, Mathematical Reviews, aux États-Unis et en 1940.
[16] L’Italie n’était pas encore en guerre mais il était impossible de réunir des étrangers appartenant à des pays belligérants.
[17] Celui-là se tiendra finalement en 1950.
[18] Et apparaît dans les Comptes rendus de l’Académie des sciences — disponible sur Gallica en cliquant ici. L’annonce manuscrite indiquait que Levi-Civita était sénateur d’Italie. Les Comptes rendus n’ont pas eu la délicatesse du « ancien sénateur », comme l’avait eue Cartan pour son jubilé.
[19] Voir mon article Publier sous l’Occupation.
[20] La notice est publiée le 14 septembre, elle est disponible sur Gallica en cliquant ici.
Partager cet article
Pour citer cet article :
Michèle Audin — «Rome (ou pas ?), 1939» — Images des Mathématiques, CNRS, 2014
Laisser un commentaire
Actualités des maths
-
5 mars 2023Maths en scène : Printemps des mathématiques (3-31 mars)
-
6 février 2023Journées nationales de l’APMEP, appel à ateliers (9/4)
-
20 janvier 2023Le vote électronique - les défis du secret et de la transparence (Nancy, 26/1)
-
17 novembre 2022Du café aux mathématiques : conférence de Hugo Duminil-Copin (Nancy et streaming, 24/11)
-
16 septembre 2022Modélisation et simulation numérique d’instruments de musique (Nancy & streaming, 22/9)
-
11 mai 2022Printemps des cimetières
Commentaire sur l'article
Rome (ou pas ?), 1939
le 24 novembre 2014 à 18:34, par Monique Pencréach
Rome (ou pas ?), 1939
le 24 novembre 2014 à 19:16, par Rémi Peyre
Rome (ou pas ?), 1939
le 26 novembre 2014 à 13:19, par bayéma