Shanghaï, Perpignan, et les mathématiques

Le 8 novembre 2009  - Ecrit par  Étienne Ghys Voir les commentaires (4)

Classement de Shanghaï : une université française dans les quarante premières

Le verdict est tombé. Le classement de Shanghaï des 500 meilleures universités en recherche vient d’être publié pour 2009. [...] L’intérêt de ce millésime 2009 réside surtout dans la publication de classements spécifiques dans cinq grandes disciplines : chimie, physique, mathématiques, informatique et économie-gestion. Et ce détail illustre assez bien les forces et les faiblesses de l’université française. En mathématiques, champ traditionnel d’excellence de la recherche française, sept universités occupent les 100 premières places. Derrière Princeton se distinguent Paris-XI (6e) et ses médailles Fields ; Paris-VI (7e) ; Paris Dauphine (35e) et l’ENS (47e). Au-delà de la 50e place, mais avant la 100e, on trouve Polytechnique, Rennes-I, Strasbourg et Aix-Marseille-I. « En mathématiques ou en physique, ce genre de classement nous permet de valider les axes forts sur lesquels on travaille », assure Guy Couarraze, président de Paris-Sud.

(Le Monde, le 31 octobre 2009)

Beaucoup de mathématiciens ont critiqué ce classement. D’abord, sa « méthodologie » était déjà étonnante dans le passé et elle l’est encore plus pour ce nouveau classement mathématique. Tous les mathématiciens conviennent que les indicateurs choisis ne sont pas judicieux. Les médaillés Fields sont bien trop peu nombreux pour que leur nombre puisse avoir une vraie signification sur la qualité de la recherche d’une université. L’utilisation de la base de données ISI pour compter les citations mathématiques n’a pas de sens lorsqu’on dispose d’un outil aussi performant que Mathematical Reviews...

Les scientifiques savent aussi que « classer » les universités du monde de la meilleure à la moins bonne ne signifie absolument rien. Cela devient encore plus caricatural lorsqu’on compare deux départements de mathématiques ayant des effectifs très différents. En France, certains labos ont plus de cent cinquante membres permanents alors que d’autres en ont moins de vingt. Quel est le sens d’une comparaison, à part de dire que l’un est plus gros que l’autre ? C’est un peu comme si on classait les gares SNCF en totalisant le nombre de TGV qui en sortent chaque jour et la superficie de la salle des pas perdus. La gare de Lyon à Paris sortirait probablement gagnante (?) mais ce serait manquer la gare de Perpignan, pourtant déclarée Centre Cosmique du Monde par Dali !

Et pourtant, les médias se régalent en publiant ces statistiques qui semblent « objectives ».

Les diverses institutions en charge des mathématiques en France ne semblent pas disposées à émettre un avis « officiel » sur ce type de classements et on peut s’en étonner. C’est peut-être parce que les mathématiciens sont très souvent élitistes. Ils s’évaluent, se comparent, et se critiquent souvent — probablement trop souvent. Est-ce pour cette raison que leurs responsables hésitent à critiquer publiquement le classement de Shanghaï, parce qu’au fond ils pensent que les mathématiciens aiment bien être évalués ?

Mais l’évaluation que nous pratiquons est bien plus fine et ne se limite pas à classer les départements de maths dans un ordre réducteur. On évalue des théorèmes, des articles, des individus, des équipes, des labos, des thèses, des formations doctorales etc. Pour ces évaluations, on lit les articles en question, on lit les thèses, on écoute les conférences des collègues, mais on n’hésite pas non plus à compter le nombre d’articles écrits par une équipe par exemple. Pourquoi pas, si ce n’est qu’un aspect de l’évaluation ? En tous cas, cela ne doit pas se réduire à un « ranking ».

Depuis une trentaine d’années, le paysage mathématique français a changé en profondeur grâce à une politique de mise en réseau de tous les laboratoires de France. Ce réseau se matérialise par un grand nombre de « Groupements de recherche » de diverses sortes et par la mise en commun d’un certain nombre de services. Ce réseau peut s’améliorer bien sûr, mais il est déjà de très grande qualité et je pense que la santé des maths en France lui doit beaucoup. Mettre nos labos en compétition ce serait mettre en péril une construction qui a déjà montré ses qualités. La compétition existe bien sûr en maths, mais pas entre les universités. Bien souvent aujourd’hui, une équipe est formée de collègues de quatre ou cinq universités différentes.

Alors certes il faut critiquer le classement de Shanghaï qui est encore plus stupide lorsqu’il traite des mathématiques. Mais surtout il faudrait faire savoir clairement aux médias que les mathématiciens ne refusent pas l’évaluation — si elle est bien faite — et qu’ils la pratiquent d’ailleurs depuis longtemps, de manière parfois féroce. Bien sûr, cela suppose que les mathématiciens fassent mieux connaître leur discipline au public en expliquant les points forts comme les points faibles. Nous devons expliquer notre fonctionnement en réseau et nos méthodes d’évaluation. Si nous ne le faisons pas, alors nous ne pourrons pas nous plaindre que les journaux ne répercutent que ce que leurs agences de presse leur communiquent : le classement de Shanghaï !

Partager cet article

Pour citer cet article :

Étienne Ghys — «Shanghaï, Perpignan, et les mathématiques» — Images des Mathématiques, CNRS, 2009

Commentaire sur l'article

  • Shanghaï, Perpignan, et les mathématiques

    le 12 novembre 2009 à 13:24, par Aurélien Djament

    Bonjour à tous,

    Tout à fait d’accord avec Étienne Ghys quant à la stupidité de ce classement et au caractère non pertinent de vouloir classer entre eux les laboratoires.

    Les outils « objectifs » de ce type constituent de fait un moyen rêvé pour les politiques désireux de « dégraisser » la recherche de légitimer la restructuration délétère qu’ils promeuvent : avec des critères qui font qu’un labo faible numériquement parlant n’a aucune chance de disposer d’un classement correct face à un gros labo, indépendamment de tout le reste, on justifie par avance toute liquidation desdits petits labos (par exemple en les désassociant du CNRS).

    De fait, ces classements n’ont rien à voir avec une vraie évaluation de la recherche, qui ne peut pas se mener à l’aide de simples indicateurs chiffrés : de tels indicateurs, même s’ils sont toujours à manier avec précautions et procèdent d’un certain nombre de présupposés, peuvent être adaptés à évaluer des tâches standardisées, effectuées à grande échelle (comparer la production industrielle de tel ou tel composant, par exemple). Mais le propre de la recherche consistant justement à explorer l’inconnu, à s’engager dans des voies où personne d’autre n’a vraiment travaillé, du moins exactement avec le même point de vue que soi, dont on découvre la pertinence ou l’impasse souvent bien après, utiliser de tels indicateurs relève soit de l’incompétence soit de l’imposture.

    Cordialement,

    Aurélien Djament.

    Répondre à ce message
    • Shanghaï, Perpignan, et les mathématiques

      le 18 novembre 2009 à 17:58, par B. Prum

      Bien sûr qu’Etienne Ghys a mille fois raison.

      D’autant que le procédé est très sur-additif ! Regroupez en une seule deux Universités de rang moyen, elle deviendra excellente.

      Ah, si Edgar Faure, dans l’angoisse post-soixante-huitarde, n’avait pas démantelé l’Université de Paris, quel beau rang occuperait-elle aujourd’hui !

      Répondre à ce message
  • Shanghaï, Perpignan, et les mathématiques

    le 20 novembre 2009 à 22:09, par Jean-Paul Allouche

    Ce qui est étonnant, c’est que — bien que le consensus semble être de ne pas croire une seconde aux billevesées, balivernes, fariboles, et autres sornettes quantitatives — l’on soit témoin de tentations et tentatives plus qu’inquiétantes de « mesurer la qualité » : depuis un président d’université qui se flatte que « son » université ait gagné six places, jusqu’à un collègue qui dégaine en comité de sélection les facteurs d’impact des revues dans lesquelles les candidats ont publié (deux histoires authentiques). Que faire alors ? Dénoncer sans cesse le manque de rigueur de tel ou tel indice (voir par exemple cet article dans Le Monde, ou mieux sa version longue sur HAL) ou, comme le suggèrent les auteurs de ces articles, diluer les classements en en inventant de nouveaux et en les faisant connaître (une attitude assez situationniste non ?). Deux choses pour conclure : d’abord, en lisant l’article ci-dessus on trouve une preuve de la conjecture de Bernard Prum sur l’université de Paris. Ensuite en regardant le classement donné ici on constate que le CNRS est en tête au plan mondial : aura-t-il le panache d’en profiter pour dénoncer solennellement et ce classement et ses cousins ?

    Répondre à ce message
  • Shanghaï, Perpignan, et les mathématiques

    le 9 décembre 2009 à 23:15, par Gérard Lasseur

    Suis-je ou non surpris que le CNRS lui même et notre ministre n’aient point fait le moindre écho du classement réalisé par
    le « SCIMAGO » ?

    On y trouve pourtant des informations fortes intéressantes
    comme la première société privée qui se trouve à la 381ème place dans le classement.

    Le classement de Shanghaï est semble-t-il plus politiquement correct et surtout conforme à l’idéologie ayant cours en France aujourd’hui.

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?

Suivre IDM