Un mariage magique
Le 24 septembre 2016 Voir les commentaires (6)
Il y a en théorie des graphes un théorème qu’on nomme très joliment
« lemme des mariages ». Un vrai lemme, utile partout, pour tout faire. Il
survient ici où là, c’est un peu la clé à molette qui rend service dans
tout plein de situations. Souvent il a été question de ce lemme sur ce site. Parcourez l’article de Frédéric Le Roux Le lemme des Mariages qui en fait une très belle introduction.
Je viens ici vous présenter un tour de magie purement mathématique, en ce sens qu’il ne nécessite qu’une maîtrise abstraite du tour, la dextérité manuelle pour l’entourloupe n’est pas utilisée. Par contre, on peut faire usage de la parole pour faire monter le suspens et tenir en haleine ses spectateurs.
Ce qui est encore plus beau ici, c’est que le tour se présente à deux complices. Appelons-les Arthur et Baptiste. Le public se nommera Carole.
Arthur présente à Carole un jeu de 8 cartes. Il lui donne le paquet et lui demande de choisir trois cartes. Arthur regarde les trois cartes choisies par Carole et lui annonce être capable de faire deviner l’une d’elles à son complice Baptiste, uniquement en lui indiquant les deux autres. Comment est-ce possible ?
Imaginez un graphe dont les deux types de sommets soient : d’une part, le type A, les sous-ensembles de 3 cartes pris dans un paquet de huit et d’autre part, le type B : les couples de cartes (de ce paquet de huit).
Il y a une arête entre deux sommets de types différents si le couple est formé de cartes de l’ensemble à trois éléments.
Arthur a dans les mains un sommet de type A et communique à Baptiste un sommet de type B qui lui est relié. Voyez-vous arriver le lemme des mariages ?
Chaque sommet A est relié à 6 couples B et chaque sommet B est relié à 6 sommets A (pour compléter en un ensemble à trois éléments, il faut choisir une carte parmi les 6=(8-2) restantes). Nous sommes dans la situation homogène où la condition du lemme des mariages est toujours satisfaite : la valence en les sommets de type A est plus grande que celle des sommets de type B (ici égale).
Arthur doit faire un choix parmi six et par ce choix orienter celui de Baptiste, qui lui aussi aura un choix à faire parmi 6. Ce problème a-t-il une solution ?
Oui ! Le lemme des mariages nous dit qu’il existe une façon pour ces deux complices Arthur et Baptiste de se mettre d’accord pour réussir leur tour de magie, mais en pratique, quelques moyens qui soulagent la mémoire peuvent être les bienvenus. En voici un dans un cas plus confortable où il n’y aurait que 6 cartes. Ce sera l’occasion de décrire un peu plus en détail ce tour que je trouve magnifique.
Nommons les cartes Autruche, Baleine, Cheval, Dauphin, Éléphant et Fennec.
Les deux complices s’entendent pour convenir d’une résolution du problème des mariages comme cela. Partageons les 6 cartes en deux paquets de trois, orientés cycliquement (ABC) et (DEF), vous avez compris le raccourci des noms de cartes.
Parmi les trois cartes dans les mains d’Arthur, deux au moins sont dans un même 3-cycle. Alors Il s’agit de faire deviner la suivante dans l’ordre cyclique de la première carte annoncée dans le couple. La seconde carte (annoncée ou pas d’ailleurs, mais écartée au moins) est celle qui reste (qui se trouve dans l’autre cycle ou dans le même, mais alors qui précède la première).
Par exemple, si Arthur a en main ADF, il annoncera (F,A) et Baptiste devinera que la carte mystère est D, la suivante de F dans le cycle (DEF). Il n’a même pas besoin de connaître la seconde carte du couple (cela parce que nous n’avons pris que 6 cartes au total, pas 8).
Si Arthur avait en main ABC, il annoncerait (A,C) par exemple, mais il aurait aussi pu dire (B,A). Attention, avec 8 cartes, il ne peut plus y avoir ce type de liberté, c’est pour cela qu’il est beaucoup plus délicat de se mettre d’accord sur une résolution explicite du problème des mariages.
Attention, le tour ne peut plus marcher avec 9 cartes (pour seulement 3 cartes choisies).
Pour finir, je vous mets au défi de trouver une méthode facile à mettre en œuvre avec votre complice préférée, pour 7 ou 8 cartes. J’attends vos propositions ! Je vous livrerai une solution pour 7 cartes la semaine prochaine (si besoin), le Gorille rejoignant le Fennec. Enfin, je remercie les étudiants Arthur, Baptiste et Carole de l’Université de Bretagne-Sud qui se sont pris au jeu.
Partager cet article
Pour citer cet article :
Sylvain Barré — «Un mariage magique» — Images des Mathématiques, CNRS, 2016
Laisser un commentaire
Actualités des maths
-
5 mars 2023Maths en scène : Printemps des mathématiques (3-31 mars)
-
6 février 2023Journées nationales de l’APMEP, appel à ateliers (9/4)
-
20 janvier 2023Le vote électronique - les défis du secret et de la transparence (Nancy, 26/1)
-
17 novembre 2022Du café aux mathématiques : conférence de Hugo Duminil-Copin (Nancy et streaming, 24/11)
-
16 septembre 2022Modélisation et simulation numérique d’instruments de musique (Nancy & streaming, 22/9)
-
11 mai 2022Printemps des cimetières
Commentaire sur l'article
Voir tous les messages - Retourner à l'article
Proposition pour 7 cartes
le 2 octobre 2016 à 15:16, par Sylvain Barré