Un défi par semaine
Février 2018, 4e défi
Le 23 février 2018 Voir les commentaires (10)Lire l'article en


Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante. Il n’y aura pas d’édition papier du calendrier 2018, il faudra attendre l’édition 2019 !
Semaine 8 :
Soit $p=2\cdot 3\cdot 5\cdot 7\cdot \ldots$ le produit de tous les nombres premiers inférieurs ou égaux à $2018$ et $q=3\cdot 5\cdot 7\cdot 9\cdot\ldots$ le produit de tous les nombres impairs inférieurs ou
égaux à $2017$. Quel est le chiffre des dizaines du produit $pq$ ?
Partager cet article
Pour citer cet article :
Ana Rechtman — «Février 2018, 4e défi» — Images des Mathématiques, CNRS, 2018
Laisser un commentaire
Actualités des maths
-
6 février 2023Journées nationales de l’APMEP, appel à ateliers (9/4)
-
20 janvier 2023Le vote électronique - les défis du secret et de la transparence (Nancy, 26/1)
-
17 novembre 2022Du café aux mathématiques : conférence de Hugo Duminil-Copin (Nancy et streaming, 24/11)
-
16 septembre 2022Modélisation et simulation numérique d’instruments de musique (Nancy & streaming, 22/9)
-
11 mai 2022Printemps des cimetières
-
3 mai 2022Comment les mathématiques se sont historiquement installées dans l’analyse économique (streaming, 5/5)
Commentaire sur l'article
Voir tous les messages - Retourner à l'article
Février 2018, 4e défi
le 23 février 2018 à 20:27, par FDesnoyer