Un défi par semaine

Janvier 2019, 2e défi

El 11 enero 2019  - Escrito por  Ana Rechtman Ver los comentarios (5)
Leer el artículo en  

Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante. Le calendrier 2019 est en librairie !

Semaine 2

Pierre et Louis montent en marchant un escalier mécanique en mouvement.
Lorsque Pierre arrive en haut de l’escalier, il a monté $21$ marches alors que Louis, avec une vitesse double de celle de Pierre, en a monté $28$. Combien de marches l’escalier possède-t-il au repos ?

Solution du 1er défi de janvier :

Enoncé

La solution est $3$.

Notons que $5!=120$, donc pour tout nombre entier $n>4$, le nombre $n!$ est un multiple de $10$ et son chiffre des unités est $0$. Le chiffre des unités de $S= 1!+2!+3!+\cdots+99!$ est donc le même que celui de $S^\prime= 1!+2!+3!+4!=33$, c’est-à-dire $3$.

Post-scriptum :

Calendrier mathématique 2019 - Sous la direction d’Ana Rechtman, avec la contribution de Nicolas Hussenot - Textes : Claire Coiffard-Marre et Ségolen Geffray. 2018, Presses universitaires de Grenoble. Tous droits réservés.

Disponible en librairie et sur www.pug.fr

Comparte este artículo

Para citar este artículo:

Ana Rechtman — «Janvier 2019, 2e défi» — Images des Mathématiques, CNRS, 2019

Comentario sobre el artículo

Voir tous les messages - Retourner à l'article

  • Janvier 2019, 2e défi

    le 11 de enero de 2019 à 10:58, par Daniate

    Comme drai david je considère des vitesses intrinsèques. Quand Louis a fait 28 marches il voit Pierre 14 marches sous lui. Pour le rejoindre Pierre ne montera que 7 marches les 7 autres lui seront fournies par l’escalier. Quand Pierre grimpe 21 marches il s’élève de 42 marches, hauteur de l’escalier.

    Répondre à ce message

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.