Un défi par semaine

Juin 2021, 4e défi

Le 25 juin 2021  - Ecrit par  Ana Rechtman Voir les commentaires (4)
Lire l'article en  

Nous vous proposons un défi du calendrier mathématique chaque vendredi et sa solution la semaine suivante.

Le calendrier 2021 est en vente ! Il s’intitule : « Le ciel dans tous ses états ».

De janvier à décembre, à travers 12 textes superbement illustrés, découvrez l’histoire des équations cachées dans les trajectoires des planètes et des étoiles ainsi que le développement des grandes théories qui ont accompagné cette ­aventure.

Semaine 25

Placer les entiers de $1$ à $5$ autour d’un cercle de telle façon qu’en sommant un certain nombre d’entiers placés consécutivement, on obtienne tous les entiers de $1$ à $15$.

Solution du 3e défi de juin :

Enoncé

La réponse est 2.

Puisque le polynôme $x^4-2x^3-7x^2-2x+1$ a pour racines $x_1$, $x_2$, $x_3$ et $x_4$, on a :
\[ x^4-2x^3-7x^2-2x+1=(x-x_1)(x-x_2)(x -x_3)(x-x_4). \]

En développant le terme de droite et en identifiant les coefficients, on en déduit que $x_1x_2x_3x_4=1$ et $x_1x_2x_3 + x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=-(-2)=2$.

Par ailleurs :
\[ \frac{1}{x_1} + \frac{1}{x_2} +\frac{1}{x_3}+\frac{1}{x_4}=\frac{x_1x_2x_3 + x_1x_2x_4+x_1x_3x_4+x_2x_3x_4}{x_1x_2x_3x_4}, \]
donc :
\[ \frac{1}{x_1} + \frac{1}{x_2} +\frac{1}{x_3}+\frac{1}{x_4}=\frac{2}{1}=2. \]

Post-scriptum :

Calendrier mathématique 2021 - Sous la direction d’Ana Rechtman,

Partager cet article

Pour citer cet article :

Ana Rechtman — «Juin 2021, 4e défi» — Images des Mathématiques, CNRS, 2021

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Juin 2021, 4e défi

    le 25 juin à 14:03, par Niak

    Il est en effet suffisant de retrouver les nombres de $6$ à $9$ parmi les sommes de $2$ ou $3$ positions consécutives. En commençant par $1$ suivi du plus petit de ses deux voisins, on trouve $10$ solutions :

    12345
    12354
    12435
    12453
    12543
    13254
    13425
    13524
    14235
    14325

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?