Kit Klein
Le 5 décembre 2008 Voir les commentaires (1)Lire l'article en


La bouteille de Klein a été introduite en 1882 par le mathématicien allemand Félix Klein. C’est un exemple relativement simple de surface qu’on ne peut pas vraiment dessiner dans l’espace euclidien habituel... à moins de s’autoriser quelques concessions, comme par exemple autoriser la surface à se recouper elle-même : on parle alors d’auto-intersection.
Pourquoi une telle pathologie ? C’est qu’en fait il n’est pas possible de définir une orientation globable sur la bouteille de Klein, autrement dit il n’est pas possible de définir un « intérieur » et un « extérieur ».
Voici un petit film réalisé par Jos Leys qui nous montre comment construire une telle surface à partir de deux rubans qu’on appelle bandes de Möbius. À vos papiers et paires de ciseaux !
Pourquoi un tel objet est-il intéressant ? Eh bien c’est que de nombreuses surfaces sont en fait non-orientables et cependant extrêmement importantes. Par exemple, quand on fait de la géométrie affine dans le plan, on est souvent amené à distinguer des cas particuliers dont on aimerait bien se passer. Rappelez-vous, deux droites distinctes se coupent toujours dans le plan... sauf si elles sont parallèles. Les mathématiciens ont compris depuis longtemps (en fait depuis très longtemps mais disons que c’est véritablement avec Pascal et Desargues au XVII° siècle que les choses sérieuses commencent) que ces petits désagréments disparaissent si on s’autorise à rajouter quelques points à l’infini. Deux droites parallèles distinctes se coupent bien... mais à l’infini. On fait alors de la géométrie projective. Devinez quoi ? Le plan projectif est une surface non-orientable... comme la bouteille de Klein !
Partager cet article
Pour citer cet article :
Aurélien Alvarez — «Kit Klein» — Images des Mathématiques, CNRS, 2008
Laisser un commentaire
Actualités des maths
-
11 mai 2022Printemps des cimetières
-
3 mai 2022Comment les mathématiques se sont historiquement installées dans l’analyse économique (streaming, 5/5)
-
1er avril 2022Prix D’Alembert 2022 attribué à Jean-Michel Blanquer
-
10 mars 2022Géométries non euclidiennes mais dynamiques
-
6 mars 2022Contrôle et apprentissage automatique (streaming, 10/3)
-
24 février 2022Bienvenue au CryptoChallenge 2022 « Qui a volé les plans d’Ada Lovelace ? »
Commentaire sur l'article
Kit Klein
le 23 avril 2013 à 13:54, par André Guidi