Un défi par semaine

Mars 2016, 1er défi

Le 4 mars 2016  - Ecrit par  Ana Rechtman Voir les commentaires (12)
Lire l'article en  

Nous vous proposons un défi du calendrier mathématique 2016 chaque vendredi et sa solution la semaine suivante.

Semaine 10 :

On lance $5$ fléchettes sur une cible ronde de rayon $25\sqrt{2}$ cm. Si les $5$ fléchettes atteignent la cible, est-il vrai qu’au moins deux d’entre elles se trouvent à une distance inférieure à $50$ cm l’une de l’autre ?

Solution du 4e défi de Février :

Enoncé

La réponse est $22$ nombres.

Un nombre à $6$ chiffres qui se termine par $164$ peut s’écrire sous la forme $10^3 n+164$, où $n$ est un nombre à trois chiffres. Puisque le nombre est également un multiple de $164$, on a $10^3n+164=164k$, soit $10^3n=164(k-1)$. La décomposition en facteurs premiers de $164$ est $2^2\times 41$, et $10^3$ est divisible par $2^2$. Par conséquent, le nombre $n$ à trois chiffres doit être un multiple de $41$, c’est-à-dire $n=41t$, où $3\leq t \leq 24$. Ainsi, il existe $24-3+1=22$ nombres à 6 chiffres, multiples de $164$ et se terminant par $164$.

Post-scriptum :

Calendrier mathématique 2016 - Sous la direction d’Ana Rechtman, Maxime Bourrigan - Textes : Aubin Arroyo, Fabiola Manjarrez et Ana Rechtman.
2015, Presses universitaires de Strasbourg. Tous droits réservés.

Partager cet article

Pour citer cet article :

Ana Rechtman — «Mars 2016, 1er défi» — Images des Mathématiques, CNRS, 2016

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Mars 2016, 1er défi

    le 10 mars 2016 à 18:29, par Laurent

    Je ne comprends pas les erreurs multiples que j’ai faites.
    J’avais pensé intuitivement au pentagone dans un premier temps. Mais un premier calcul faux m’a donné un résultat supérieur à 50. Je ponds ensuite un raisonnement faux ! Et pour comble quand je reprends mes calculs de longueur du côté du pentagone j’obtiens 41,56 ! Comment obtenez vous 43,70 ?

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?