Un desafío por semana

Mayo 2019, quinto desafío

El 31 mayo 2019  - Escrito por  Ana Rechtman
El 31 mayo 2019
Artículo original : Mai 2019, 5e défi Ver los comentarios
Leer el artículo en  

Proponemos un desafío del Calendario Matemático por semana y su solución a la semana siguiente. ¡El calendario 2019 está en librerías (en Francia)!

Semana 22:
Sea $X$ el resultado de uno (y solo uno) de los experimentos siguientes:

Exp. 1: $X$ es el número obtenido al lanzar un dado de $6$ caras.

Exp. 2: $X$ es el número de ’’caras’’ obtenidas al lanzar cinco veces una moneda.

¿En cuál de estos dos experimentos se da el resultado $X=5$ con mayor probabilidad?

Solución del cuarto desafío de mayo:

Enunciado

La solución es $250$.

Sea $n$ un entero que puede expresarse como la diferencia entre dos cuadrados: $n=x^2-y^2=(x-y)(x+y)$.

Observemos que $(x+y)$ y $(x-y)$ tienen la misma paridad (ambos son pares o ambos son impares), de modo que si $n$ es par, debe ser también múltiplo de $4$.

Por lo tanto, los números pares que no son múltiplos de $4$ no pueden escribirse como la diferencia de dos cuadrados. Estudiemos los otros números:

  • Si $n$ es múltiplo de $4$, denotémoslo $n=4m$. Tenemos $(m+1)^2-(m-1)^2=n$.
  • Si $n$ es impar, denotémoslo $n=2r+1$. Entonces $(r+1)^2-r^2=n$.

En consecuencia, los números entre $1$ y $1000$ que no pueden escribirse como la diferencia entre dos cuadrados son los números pares que no son múltiplos de $4$, es decir, 2, 6, 10, ..., 998. Esto hace un total de $\frac{1000}{4}=250$ números.

Post-scriptum :

Calendario matemático 2019 (versión en español) - Bajo la dirección de Anne Alberro y Radmila Bulajich - 2018, Googol S.A. de C.V. Todos los derechos reservados.

Calendario matemático 2019 (versión francesa) - Bajo la dirección de Ana Rechtman, con la contribución de Nicolas Hussenot - Textos: Claire Coiffard-Marre y Ségolen Geffray. 2018, Presses universitaires de Grenoble. Todos los derechos reservados.

Comparte este artículo

Para citar este artículo:

— «Mayo 2019, quinto desafío» — Images des Mathématiques, CNRS, 2019

Comentario sobre el artículo

Dejar un comentario

Foro sólo para inscritos

Para participar en este foro, debe registrarte previamente. Gracias por indicar a continuación el identificador personal que se le ha suministrado. Si no está inscrito/a, debe inscribirse.

Conexióninscribirse¿contraseña olvidada?

La traducción del sitio del francés al castellano se realiza gracias al apoyo de diversas instituciones de matemáticas de América Latina.