Un défi par semaine

Novembre 2015, 2e défi

Le 13 novembre 2015  - Ecrit par  Ana Rechtman Voir les commentaires (7)
Lire l'article en  

Nous vous proposons un défi du calendrier mathématique 2015 chaque vendredi et sa solution la semaine suivante.

Semaine 46 :

Est-il possible de placer un nombre dans chaque case de la grille de façon que la somme des nombres dans chaque colonne, chaque ligne et les deux diagonales soit la même ?

PNG - 17.1 ko

Solution du 1er défi de Novembre :

Enoncé

La réponse est $x=1$ et $x=4$.

Clairement, $x=1$ est une solution. Pour trouver les autres solutions, on réécrit l’équation en $x^{\frac{x}{2}}=x^{\sqrt{x}}$, qui implique $\frac{x}{2}=\sqrt{x}$ si $x\neq 1$. En élevant au carré, on obtient $x^2=4x$, soit $x(x-4)=0$, dont la seule solution positive est $x=4$.

Par conséquent, toutes les solutions sont $x=1$ et $x=4$.

Post-scriptum :

Calendrier mathématique 2015 - Sous la direction d’Ana Rechtman Bulajich, Anne Alberro Semerena, Radmilla Bulajich Manfrino - Textes : Ian Stewart.
2014, Presses universitaires de Strasbourg. Tous droits réservés.

Article édité par Ana Rechtman

Partager cet article

Pour citer cet article :

Ana Rechtman — «Novembre 2015, 2e défi» — Images des Mathématiques, CNRS, 2015

Crédits image :

Image à la une - ANDREA POSTOLESI / TIPS / PHOTONONSTOP

Commentaire sur l'article

Voir tous les messages - Retourner à l'article

  • Novembre 2015, 2e défi

    le 13 novembre 2015 à 16:38, par mesmaker

    Au temps pour moi, j’avais aussi fait une erreur de calcul. Je trouve bien que la somme des lignes, des colonnes et des diagonales fait 52.5. De plus les 8 équations ne sont bien évidemment pas indépendantes, j’ai été trop pressé. Merci.

    Répondre à ce message

Laisser un commentaire

Forum sur abonnement

Pour participer à ce forum, vous devez vous enregistrer au préalable. Merci d’indiquer ci-dessous l’identifiant personnel qui vous a été fourni. Si vous n’êtes pas enregistré, vous devez vous inscrire.

Connexions’inscriremot de passe oublié ?