Figure sans paroles #8.11

Figure sans paroles
Publié le 13 février 2023

ÉCRIT PAR

Arseniy Akopyan

Chercheur - Institute of Science and Technology (Autriche)

Partager

Commentaires

  1. Sidonie
    février 14, 2023
    11h27

    Un 18-gone. Son centre O. 6 sommets consécutifs F, A, B, C, D et E. M, N et P sont les milieux de [OF], [OB] et [CE].
    Il s’agit de démontrer l’alignement M, N et P. R est l’intersection entre (PM) et (OA)
    Je donne la mesure des angles en degrés. Un angle au centre interceptant un côté mesure donc 20°.
    Ainsi (OF, OC) = 60° et OFC est un triangle équilatéral. M milieu du côté [OF] d’où (CM) perpendiculaire à (OM), M appartient au cercle de diamètre [OC] et (CO, CM) = 30°.
    Même démonstration pour P milieu de la base du triangle isocèle OCE donc il appartient aussi au cercle de diamètre [OC] et on a (PO, PM) = (CO, CM) = 30°.
    (OA, OP) = (OA, OD) = 60° et donc MPR triangle rectangle d’où (PM) et (OA) sont perpendiculaires.
    On a évidemment (OA) et (MN) perpendiculaires avec (PM) // (MN) d’où l’alignement.

  2. Hébu
    février 14, 2023
    13h15

    Oui, bien vu !

    Une autre façon de faire : appelant C’ et E’ les symétriques de C et E par rapport à OA (l’autre arc de la figure proposée), on voit que EE’C’C est un trapèze isocèle, dont PN est la médiane, et EC’ et E’C les diagonales

  3. Sidonie
    février 14, 2023
    18h16

    C’est en effet beaucoup plus simple, en commençant par démontrer toutefois que M et N sont les milieux des diagonales ce qui n’offre guère de difficultés avec la présence de deux losanges ODBC’ et OBFE